
International Journal of Theoretical Physics, Vol. 28, No. 9, 1989 

Atomic and Gravitational Clocks 
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Atomic and gravitational clocks are governed by the laws of electrodynamics 
and gravity, respectively. While the strong equivalence principle (SEP) assumes 
that the two clocks have been synchronous at all times, recent planetary data 
seem to suggest a possible violation of the SEP. Our past analysis of the 
implications of an SEP violation on different physical phenomena revealed no 
disagreement. However, these studies assumed that the two different clocks can 
be consistently constructed within the framework. The concept of scale invari- 
ance, and the physical meaning of different systems of units, are now reviewed 
and the construction of two clocks that do not remain synchronous--whose rates 
are related by a nonconstant function /3a--is demonstrated. The cosmological 
character of/3 a is also discussed. 

1. I N T R O D U C T I O N  

Of the forces of nature ,  the two more successfully described are the 
e lect romagnet ic  forces, through q u a n t u m  elect rodynamics  (QED),  and  

macroscopic  gravity, th rough Eins te in ' s  theory of general relativity (GR).  

The high level of agreement  be tween predict ions  and  observat ions leave 

little doub t  that  we now possess the correct physical  in terpre ta t ion  as well 
as the theoretical  tools to describe both forces. 

Q E D  and  G R  are also complete  theories in the sense that they yield 

opera t ional ly  well-defined clocks which satisfy the dynamica l  equat ions  of 
the theories themselves.  To unde r s t and  what  is required for a theory to 
yield a well-defined clock, we in t roduce  the no t ion  of scale invar iance,  SI. 

Cons ide r  a dynamica l  equat ion  defined in a given system of units ,  
con ta in ing  field variables and  d imens iona l  parameters.  Cons ider  now a 
scale ( length) t r ans fo rmat ion  of the type 

L-~ L ,  -= a , ' ( x ) L  (1) 
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where f~,(x)  is a dimensionless arbitrary function of space-time. Regarding 
coordinates as dimensionless space-time markers, it follows from equation 
(1) that 

* = g,~f~,2(x), ds, = a , '  ds (2) g~v 

Furthermore, a physical tensor A of arbitrary rank will be taken to transform 
like 

A ~ A* = A f t ,  ~('~ (3) 

where zr(A) is called the power of  A: zc(ds) = 1, ~r(g~) = 2. Because null 
cones transform into null cones, it follows that c = 1 holds in all systems 
of units. Therefore, because v = (v/c)c, ~r(v) = 0. The power of  any quantity 
can therefore be expressed in terms of I t (m) and ~-(L) = 1. 

Given these definitions, an equation is scale invariant if: (1) in the 
transformed system of units, it preserves the same form involving the 
transformed fields; (2) it has the same parameters;  and (3) there is no 
explicit dependence on f l , ( x ) .  

We now show that an SI theory cannot yield a unit of  time, that is, a 
clock. Because of the assumed SI, the dynamical equations governing the 
clock are identical in any system of units and so their solution for the period 
p of  the clock in one given system of units is the same in any other system 
of units, p = p , .  On the other hand, if instead of solving the dynamical 
equations, we apply the transformation (1) directly to p, we obtain the result 
p = f ~ , p , ,  that is p r p , ,  in contradiction with the previous result. It follows 
that a SI theory yields a solution that is simultaneously constant and variable, 
thus proving that such a quantity is physically meaningless. In other words, 
an SI theory, being invariant with respect to changes in scale, does not 
possess a scale, thus lacking an intrinsic unit of  time. 

Therefore, an SI theory cannot provide a clock. For a clock to exist, 
the underlying theory must be non SI. 

As an example, let us consider the case of  the electromagnetic clock, 
an electron revolving around a proton, governed by the following equations 
(Weinberg, 1972): 

--~[~/gF ] , = J ~ ,  u.~u =--uAF~ (4) 
' ' m 

The periodic solution with the period p is given by 

U- 1+o (5) 

where 1 is the angular momentum per unit mass. In equations (4) there is 
a "time coordinate" x ~ whose physical meaning is not given by equations 
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(4), where x ~ is in fact a marker. Its physical meaning can be determined 
by considering that since de/dx~176176 we have from 
equation (5) dp/dx ~ O, thus allowing one to attribute a physical meaning 
physical unit of time, given by equation (5). This property is due to the 
fact that equations (4) are not SI. In fact, let us apply equation (1) to 
equations (4). As 2"rr(e)=rr(h)=l+~(m)=2-rr(G)=-2-g and 
2~r(F~) = 2rr(E, H)  = 7r(p~) = 7r(m) - 3 (E and H are the electric and mag- 
netic field strengths, pv is the energy density, e2/he is a pure number, and 
both h/me and GM/c 2 have the dimensions of a length), equations (4) 
become, treating coordinates as dimensionless, 

1 ~ 4 + ~  [N/~ F ,  a ,  ],v -- f~zl')4+,rr (6a) 

u,~u,~ + ~*~__=__e , , , ~  o=+3 (6b) 

with A~,~---u~,u,,-g,,, and 27r-= 27r(F "v) = 7 r (m) -7 .  
Clearly, while equation (6a) can be made SI by assuming 7r(m) = -1 ,  

equation (6b) cannot, for the f~, dependence in the A term cannot be made 
to disappear, because there are no free parameters in Auv. Therefore the 
system (4) is not SI. 

Let us now consider a gravitational clock (a planet and a star, for 
example) and let us consider the Einstein equations describing macroscopic 
gravity. From the previous analysis it follows that the lack of SI of equations 
(4) is due solely to the equations of motion, which in the gravitational case 
are already contained in the Einstein field equations, which can therefore 
be expected to be not SI. This is indeed the case (Singe, 1976): the Einstein 
equations do not retain their original form under the scale transformations 
(1)-(2). Their lack of  SI is why a gravitational clock is a well-defined 
quantity, whose period, given by Kepler's third law, reads (M is the total 
mass and J is the orbital angular momentum per unit mass) 

27rJ 3 
P (GM)  2 (7) 

The above discussion shows that the electromagnetic and gravitational 
clocks are meaningful because the dynamical equations governing them are 
not SI. 

2. THE STRONG EQUIVALENCE PRINCIPLE 

To study the relationship of the two clocks, consider a physical 
phenomenon characterized by a proper length interval As, which we shall 
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measure using electromagnetic and gravitational clocks, the results being 
As~ (atomic) and ASE (Einstein), respectively. 

Because clocks are the manifestation of underlying forces and we do 
not yet possess a unified theory, we do not know a priori whether the ratio 

ASE 
=]3 a (8) 

As a 

is constant. The lack of knowledge of the function ]3 a has so far been 
circumvented by adopting the strong equivalence principle (SEP) (Will, 
1979; Thorne et aL, 1973), which assumes that 

J~a : const = 1 (9) 

implying that, for example, the value of the period of a planet should be 
independent of the clock used to measure it. 

The SEP comprises two assumption (Will, 1979): (1) that the weak 
equivalence principle (WEP) holds; and (2) that local gravitational and 
nongravitational experiments are independent of where and when in the 
universe they are performed. The requirement (9) refers to "when in 
the universe," since, due to the high degree of homogeneity observed 
in the universe, we assume that ]~a is only time dependent. Furthermore, 
one experiment is not sufficient to test the SEP; at least two experiments 
are needed at two different times, because/3~ can be normalized to unity 
at any one time; what is physically relevant is/3,.  

3. TENTATIVE EVIDENCE OF A VIOLATION OF SEP 

Using 8249 lunar occulatation measurements (Van Flandern, 1981), 
lunar radar ranging data (Dickey et aL, 1980; Calame and Mulholland, 
1978), and dynamical determinations of the lunar period (Morrison and 
Ward, 1975; Goad and Douglas, 1978; and Lambeck, 1977), it has been 
suggested that at the present epoch/3,//3a = 10 -J~ year ~. However, as tidal 
forces make the ear th-moon system less than an ideal laboratory for our 
purposes, it would be more satisfactory to use radar ranging data to the 
inner planets Mercury, Venus, and Mars. Using the available results, an 
upper limit [ j~a/ /~al  ~ 10 -l~ year -I was set (Reasenberg and Shapiro, 1978). 

We stress here one aspect of the theoretical analysis. It may seem 
natural to use the standard Einstein equations with the simple alteration 
G ~ G ( t ) = G o + G o A t +  . . .  whenever G appears. However, from the 
Einstein equations it follows quite generally that for an isolated system, 
G M  = const (Landau and Lifshitz, 1962; Tolman, 1966), where M is the 
total mass. [For any local system, this constraint holds regardless of  cosmo- 
logical expansion (Will, 1979).] The violation of this constraint can lead to 
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serious errors. For example,  because the period and distance to a planet 
are given by P ~ J3/(GM)R, R ~ J2/(GM), GM = const implies/~ = 0 and 
P = 0  and not 2 R / R = P / P = - 2 ( 3 / G ,  as usually stated. This argument 
shows that a value of G / G  cannot be extracted from the standard Einstein 
equations, where by construction G always appears multiplied by M, the 
product  being required to satisfy the constraint GM = const. 

For these reasons, we (in collaboration with R. Helling and P. J. Adams 
of JPL) have enlarged the system of dynamical equations (originally used 
by R. He l l ing ) to  make them compatible with a possible violation of the 
SEP. The Viking radar ranging data to Mars are now being analyzed. The 
best fit solution will hopefully provide a reliable value for/)~.  

4. P U R P O S E  AND BASIC A S S U M P T I O N S  

Let us construct a theoretical f ramework that allows for an SEP violation 
in the form of a nonconstant  3~ This allows for the presence of two 
fundamental  systems of  units in nature, which is necessary to explore 
consistently the implications of  an SEP violation as well as to provide 
relations which can be subjected to observational test. 

Gravitat ional or dynamical  units (EU, where E stands for Einstein), 
are the units in which Einstein equations remain unchanged. These field 
equations contain the equations of motion that yield the clock equation 
(7), which is therefore taken to give the gravitational or dynamical unit of  
time (also called ephemeris time). In EU, GE = const by definition and so 
the total mass is also constant, since GEME is constant. In addition, from 

b~v TE;~ = 0 applied to a pressureless fluid, we find that the rest mass is also 
constant. Therefore, in general 

GE = const, ME = const (10) 

where M is either total or (macroscopic) rest masses. As the particle number  
N will be shown not to be constant, equation (10) does not mean that 
microscopic masses mE are constant in EU. Other atomic quantities, such 
as e and h, are also in principle not constant in EU. 

Atomic units (subscript a) are the units in which the dynamical behavior  
of  an electromagnetic clock is governed by equation (4), which in turn 
implies that equation (5) is taken to be the atomic unit of  time. Furthermore, 
in AU we have 

ea = const, m, = const, ha = const (11) 

The first two terms are the analogue of (10) for microphysics. [Actually, 
terms in equation (11) are contained in equations (4).] In analogy with 
what we said earlier, the second term of equation (11) does not imply that 
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macroscopic masses M, are constant in AU. In fact, they are not [see 
equation (25)]; G, is also not constant [see equation (18)]. 

Let us now consider the basic problem of determining the relation of 
the two "preferred" systems of units. We introduce a language that describes 
any physical equation in a general system of  units of  which the two 
"preferred" systems are special cases. 

5. PHYSICS IN GENERAL UNITS 

Let us reconsider equation (1) and transform L ,  to L**, 

L, -> L** = EU'(x)L, = (f~,Ut)-' L =- f~**L 

The quantity f~, has therefore power -1 ,  as from equation (3), where A*, 
A, and f~, are replaced by l l**,  f~,,  and II, respectively. Therefore, any 
quantity of  the form A*f~,<A ) has zero power under subsequent scale 
transformations: 

As an example, we perform a further transformation of equation (6) 
to a g**, F**, J** system. The final result can easily be seen to be of the 
same form as equation (6), with only double starred quantities in it. There- 
fore, equation (6) can be said to be written in general units. 

Let us now define a fiducial system of units by f l .  = 1, and a general 
system of units by ~ .  =/3. Here, as in previous work (Canuto et al., 1977), 
we choose EU as the fiducial system (/3Eu = 1), so that to be consistent with 
equation (8), the AU system is defined by flAU =/3,- Note that while /3, 
defining a general system of units, has power -1 ,  /3a is of power zero, 
because/3a =/3A~//3E~ is the same in all systems of units. Clearly, the use 
of general units does not introduce any new physics. 

6. THE ACTION 

To deal with the problem of constructing the two clocks, we propose 
an action in general units, which as such must be of  zero power, 

I = f  #fl2-gds+ ll6rr f /32.gF~F~x/~dx4 

f 2-g v + /3 eA~u ds (12) 

where /.~ represents masses in general (microscopic or /and  macroscopic) 
and where the relation between F~,~/3~-g/2 and ma/3 l-g/2 is the usual one. 
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It is easy to check that the power of  I is zero. Because the dimensions of  
I are [M] [L] ,  the fl2-g factors are required for I r (1 )=  0. The matter part 
of  equation (12) is different from that proposed by Dirac (1973), which is 
a particular case of  equation (12) if ~fl~ g = const. In AU, and for micro- 
scopic masses, this implies g = 1, because of equation (11). However, g = 1 
will be shown not to allow the two clocks to run at different rates. The 
relaxing of the restriction/~fl ~-g = const is why we can construct two clocks 
that run at different rates. 

7. M A C R O S C O P I C  GRAVITATIONAL CLOCK 

Consider the periodic motion of a planet in the gravitational field of 
a star. From the first term in equation (12), we derive the following equations 
of  motion in general units, 

2 - g  + (~/~ ),~, ~ u~u~ ~ ~  :0 (13) 

where the metric g ~  due to the star is given in general units by the 
Schwarzschild metric times fl-2. As we are dealing with a macroscopic 
object, then 

/~ = M, ME = fi ~-gM = const (14 )  

where the second relation is the general law for mass transformation from 
Einstein units to general units, following from equation (3) with A = ME, 
A * = M ,  ~ , = f l ,  ~r (m)= 1 - g .  The last equality in equation (14) follows 
from equation (10). Equation (13), with equation (14), specializes to 

EU: u;%ur=0;  AU: uT~uV+fi"'vA"~'=O (15) 
/3o 

The solutions for the period P can be easily worked out. The results are 

2~J~ 
EU: PE (GEME) 2=cons t  

AU: Pa=,8 ; 'PE  (16) 

8. E L E C T R O M A G N E T I C  CLOCK 

The motion of an electron in the field of  a proton F A~ is governed by 
the following two equations, derivable from equation (12): 

(v~FA~/31-g/2).~ = 4:r f e / 3 ' - g / z t $ g ( x  '~ - -  2 ~) dz A =- jA (17a) 

2--g 

~ --  u"F'~ (17b) U;~U 4: ~ = l 'x 
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In equation (17b) we used e/3 ~ g / 2 = c o n s t ,  a constraint derivable from 
equation (17a) using the antisymmetry of F,~. Let us now specify equation 
(17) to AU and EU. In AU we require equation (17) to coincide with 
equation (4). In AU, fl =/3a, and for a microscopic mass # = m = ma = const. 
The requirement can therefore be fulfilled only if 

2 g = 2 ,  rr(m) = - 1 ,  Gaff. = const (18) 

To derive the last term of equation (18), we have used equation (3) with 
A~ GE, A*---Ga, ~.---- fla, as well as equation (10). 

The corresponding solution for the period pa in a local Lorentzian 
coordinate frame is now given by equation (5), with the subscript a attached 
to all the quantities. Let us now consider EU, where 

,8 = 1, t* =-- m E  = rnafl,~ (' ') 

e 2 e~  2~ l-r rr(rn) = = e./J~ (19) 

where we have again used equation (3). Because g = 2 ,  equation (17a) 
retains the same form as in AU, whereas equation (17b) becomes 

E U :  u . , ~ u  fla'~" A '~"  ea " '~ ? u__ = - - 3 a  u F v (20 )  
~a  ma  

Using a local Lorentzian coordinate frame, the solution for the period PE 
is found to be 

P E  = f l a P a  [pa = const, equation (5)] (21) 

To achieve the desired result, we had to a fix a gauge: a relation between 
/3a and G, ,  equation (18). This is a welcome feature because until now, we 
had to consider g as a free parameter  (Canuto and Hsieh, 1979; Canuto et 
al., 1979). This no longer the case, as the theory now demands equation 
(18). Note that such a gauge was previously suggested in connection with 
the 3 K blackbody radiation (Canuto and Hsieh, 1978). 

We have proposed a Lagrangian whose solution for the periods of  
gravitational (P) and atomic (p)  clocks are 

PE =/3aPa, PE = fl~Pa, PE, Pa ---- const (22) 

o r  

Pa PE = p--~ ~/3~ (23) 
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namely: in either atomic or gravitational units, the ratio of  the periods of  
the two clocks is not constant, provided fla is not constant. We have therefore 
proved that, provided g = 2, a f ramework exists which allows the two clocks 
to run at different rates. 

We must stress that the extension of equation (17a) to a charged fluid 
must be written as F.~.f = J", where J~ = enu~f, f being an undetermined 
function o f / 3 , .  Due to the antisymmetry of  F "~, it follows that J~, = 0, 
which implies e N f =  const. Because for g = 2, e is constant in any units, 
equation (19), it then follows t h a t f  ~ N -~. The Coulomb force now becomes 
e2N2f2/r 2. The analogous gravitational force is GM2/r  2, with G M  2= 
GEM2E = const, a result valid for g = 2. The correspondence between macro- 
scopic Coulomb's  and Newton 's  laws is therefore preserved. 

9. WEAK EQUIVALENCE P R I N C I P L E  

In achieving the result (23), the central part was played by the action 
(12) and the equations of  motion ensuing from it. Since equation (13) is in 
general units, using g=2 ,  the fact that m~ l-g =mE= rna/31a-g--/3~ 1, and 
equation (14), we obtain 

Microscopic bodies: 

Macroscopic bodies: 

B.. 
u~u ~ + ' - ' "  A ~ -= A ~ (24a) 

B .  
u~u ~ + ' ' "  A ~ = 0 (24b) 

which indicate that the two types of bodies do not follow the same types 
of  trajectories. Equations (24) are still in general units. 

From the operational point of  view, we are only interested in AU, so 
we limit our considerations to them. Equations (24) tell us that in AU, 
microscopic masses follow geodesics while macroscopic masses do not. In 
either case, however, masses do not enter the equations and the WEP is 
separately satisfied, in the sense that all macroscopic objects follow the 
same path as do all microscopic ones. The results of the Eotvos-Dicke-  
Braginskii experiments (Will, 1979; Rudenko,  1978), showing that two 
(macroscopic) bars of  A1 and Au (or A1 and Pt) follow the same path, are 
therefore in full agreement with equations (24), as the extra "force"  rep- 
resented by fla is independent  of  the mass and it affects both bars equally. 
thus, its effect cancels out in this type of experiment. 

To test equations (24) one should follow in time the trajectories of  an 
atom and of  a planet, which is the procedure in the radar ranging experi- 
ments. In fact, one may think of atomic and gravitational clocks (the 
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ear th -moon  system) as two "objects"  moving in space-time following two 
given trajectories. If, as time evolves, the two systems follow different types 
of  trajectories, charting the time evolution of the macroscopic object with 
the reference provided by the microscopic object cannot yield constant 
results if the ratio of  the proper  lengths spanned by the two objects is not 
constant in time. Therefore equations (24) are an alternative way of interpreto 
ing the lunar and planetary data that stresses the difference in the two 
trajectories rather than the difference of  the two clocks. These two ways of 
interpreting the data are equivalent, although the second one is the one 
almost exclusively referred to in this context. 

10. PARTICLE NUMBER N O N C O N S E R V A T I O N  

The fact that only g = 2 is allowed has important  consequences. In fact, 
since ma and ME are constant, it follows that [using equation (3) between 
AU and EU] 

l--g g--1 rnE ~/3~ , Ma N ~  _/3a , /3g-i (25) 

implying that N is no longer constant. To have a conserved N, we have to 
choose either /3a = const, in which case the SEP is automatically satisfied, 
or g = 1, which would also lead us to an SEP-conserving framework. In 
fact, for g = 1 the left-hand side of  equation (15) governing the macroscopic 
gravitational clock in AU would be identical to that of  equation (17b) 
governing a microscopic electromagnetic clock in AU, thus leading to no 
difference between the two periods P~ and Pa, thus returning to the SEP. 
[The right-hand side of  (17b) does not affect this statement because, due 
to spherical symmetry, it does not affect the angular momentum conservation 
law.] 

Equation (25) is the most important consequence of the SEP violation 
framework, as it indicates that a violation of the SEP is intimately related 
to a violation of the particle number  conservation law. 

11. GRAVITATIONAL CONSTANT 

It is often stated that if atomic and gravitational clocks are different, 
the gravitational constant G must vary with atomic time. While the statement 
is not incorrect, it may give the impression that it adds some new fact. This 
is not the case. In fact, neither in the gravitational action of Canuto et al. 
(1977) nor in the one presented here is there an independent function G. 
One calls G the combination GEfl - g =  G, GE = const. But one does not 
introduce new physics, one simply lumps together a function/3, a parameter  
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g, and a constant GE. That the physics is contained in/3~ and not in G, is 
evident from the fact that the experiments on the moon and the inner planets 
yield directly/3a and not G~, which is derived quantity, equation (18). 

12. COSMOLOGICAL MEANING OF fla 

The framework presented here, while permitting the examination of 
the implications of an SEP violation, does not explain the physical mechan- 
ism behind it. In fact, fla is treated here as an external quantity, much as 
viscosity is treated in classical fluid mechanics, where it enters as an external 
parameter whose evaluation requires a microscopic kinetic theory. 

Although we do not offer a dynamics for/3a, it is important to stress 
that a dynamics of 13a can be either of a local or global nature. In the first 
case, fla is regarded as a space-time field described by an action to be added 
to the total action; this would entail a coupling of/3a to local matter, with 
the result that even in EU, macroscopic gravity would no longer be described 
by standard Einstein equations, thus departing completely from our basic 
assumptions. A local approach was adopted by Brans and Dicke (BD). As 
several studies have indicated (Weinberg, 1972, pp. 628-629; Bekenstein, 
1989), solar system experiments constrain, within the BD approach, the 
variability of /3~ to some orders of magnitude below the value quoted 
previously. As there is no reason why we should arbitrarily restrict /J~ to 
such low values, we find the local approach inadequate. 

The value of/3~ implying ~a/fl~ ~ Ho suggests that/3~ is related to the 
structure of the universe and that its dynamics is likely to be governed by 
topological rather than local space-time considerations. The SEP violation 
represents therefore a cosmological influence on the local physics, in accord 
with Mach's principle. In contrast, accepting the SEP as an exact law of 
physics is equivalent to assuming that local physics is independent of the 
rest of the universe. 

Recent work on nucleosynthesis (Canuto and Goldman, 1982) has 
indicated that, as expected, an SEP violation with a time scale of the order 
of the Hubble time cannot be extrapolated back to the radiation-dominated 
era. Furthermore, a dynamics for photons can be constructed (Canuto and 
Goldman, 1982) independently of/3~: in particular, a very general argument 
has been found indicating that the photon number N~, contrary to the 
particle number N, equation (25), is adiabatically conserved for any value 
of the parameter g. [The photon treatment presented in Canuto and Hsieh 
(1979) is therefore valid only if g = 1.] 

The two previous results suggest that an SEP violation, if it exists, 
began to manifest itself only after the universe entered the matter-dominated 
era, before which ~a may have been constant. 
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13. CONCLUSIONS 

The most important results of the present analysis are: 
�9 Einstein field equations retain their standard form only in EU. In 

AU, they depend on ~a and their form is given by equation (2.34) 
of Canuto et al. (1977). 

�9 The trajectory of a macroscopic (many-body) object is a geodesic in 
EU; in AU,/~a factors enter. The results are given in equation (24b). 

�9 The trajectory of a microscopic (one-body) object is a geodesic in 
AU; in EU, fla factors enter [equation (24a)]. 

�9 While in AU the description of a microscopic one-body dynamics 
is unchanged (this holds true even at the level of the Schr6dinger 
equation), the description of a many-body situation is affected by 
fla. In fact, the particle number N - / 3 , ,  equation (25). This in turn 
implies that macroscopic masses are such that M a -  fla, ME-- const. 
Microscopic masses are such that m a -  const, mE ~/3a I �9 Finally, the 
gravitational coupling G is such that GE = const, G a ~ ~a 2. 
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